您当前的位置:首页 > 《麻醉与监护论坛》杂志文章 > 17卷第1期
摘要 目的:观察异氟烷和异丙酚麻醉对体外循环(CPB)心内直视手术患者围术期脑氧供需平衡及脑损伤标记物S100b和神经元性烯醇化酶(NSE)蛋白浓度的影响。方法:将30例择期行体外循环瓣膜置换手术病人随机分为异氟烷麻醉组和异丙酚麻醉组,分别于CBP开始前(T1)、鼻咽温降至稳定期(T2)、复温至 关键词:异氟烷;异丙酚;体外循环;脑氧代谢;脑损害 Effects of propofol and isoflurane on the cerebral oxygen metabolism and cerebral injury during cardiopulmonary bypass:a comparative study GUO Jian-rong,REN Li-yuan,DU Jian-man,CHEN Xiao -fei,HU Li-hong,YU Lei-ting Department of Anesthesiology,Lihuili Hospital,Medical School,Ningbo University,Ningbo 315040,Zhejiang,China ABSTRACT AIM:To observe the effects of isoflurane and propofol on the changes of cerebral oxygen supply-demands balance and serum concentration of S100b and NSE protein in cardiac valve replacement during cardiopulmonary bypass(CPB).METHODS:All of 30 patients undergoing heart valve replacement were prospectively randomized divided into isoflurane group(with isoflurane adoption) and propofol group(with propofol adoption),15 cases each.Jugular venous bulb blood oxygen saturation(SjvO2),Jugular arterial-venous oxygen content difference( Da-jvO2) and cerebral oxygen extraction rate (CERO2) and radical artery blood gas analysis were measured at six stages(T1-T6) of CPB:before CPB(T1);Bring down the temperature to stability stage(T2);recovery temperature to KEY WORDS Isoflurane;Propofol;Cardiopulmonary bypass;Cerebral oxygen metabolism;Cerebral injury
体外循环(CPB)心脏手术后约有70%的病人有过轻微的脑功能障碍,
1 资料与方法 1.1 病例选择与分组 择期CPB下心脏瓣膜置换术患者30例,男14例,女16例,年龄45~68岁,心功能Ⅱ级11例,Ⅲ级15例,Ⅳ级4例。其中二尖瓣置换14例,主动脉瓣置换8例,主动脉瓣和二尖瓣双瓣置换8例。将患者按麻醉维持方式随机分为异氟烷组(A组)和异丙酚组(B组),每组各15例。所有病例术前均无严重高血压、严重贫血、肝肾功能不全、内分泌及神经系统疾患。
1.2 麻醉方法 所有病例术前30min肌注哌替啶1mg·kg-1,东莨菪碱0.006 mg·kg-1。麻醉诱导依次静注咪达唑仑0.05~0.1mg·kg-1,舒芬太尼0.3~ 1.3 CPB方法 应用德国Stockert SC体外循环机及膜式氧合器,动脉端装有微栓过滤器,非搏动性血流灌注,保持灌流量2.2~ 1.4 监测指标 在局麻下经桡动脉穿刺置管测压并采血,经右颈内静脉穿刺置管用于测压和输血输液。麻醉诱导平稳后,采用小儿ARROW单腔深静脉导管,经左颈内静脉逆行穿刺置管至颈静脉球部备采血样。分别于CBP开始前(T1)、鼻咽温降至稳定期(T2)、复温至 1.5 统计学处理 所得数据以均数±标准差( 2 结果 2.1 一般资料 两组患者年龄、性别、体重、身高、CPB转流时间、主动脉阻断时间、手术时间、血流动力学、动脉血气、血球压积、尿量变化组间比较差异无统计学意义(P>0.05,表1)。两组患者术后没有1例出现明显的临床脑损伤症状。
2.2 脑氧代谢指标的变化 两组患者CPB前脑氧代谢指标SjvO2、Da-jvO2、CERO2组间比较差异无统计学意义(P>0.05);CPB开始降温过程中,两组病人SjvO2水平明显增加,Da-jvO2、CERO2水平明显降低(P<0.01或0.05)。复温至 2.3 血浆S-100b和NSE蛋白水平的变化 CPB开始后,两组患者颈静脉球部血浆中S-100b蛋白浓度持续增加(P< 0.01),在复温期达到峰值,以后逐渐下降,停机后24h逐渐恢复至术前水平。CPB开始后,患者颈静脉球部血浆中NSE蛋白浓度持续增加(P<0.05或0.01),CPB结束后30min达到峰值,以后逐渐下降,停机后24h仍明显高于术前水平(P<0.05,表3)。 3 讨论 CPB心脏直视手术所致的脑损伤主要与CPB期间大脑缺血缺氧有关,长时间CPB非搏动性灌注,心腔、主动脉及人工心肺装置的微小气栓、血栓可导致脑组织局部产生缺血缺氧性损伤。CPB期间许多因素影响到脑组织血流量(CBF)和脑氧代谢率,影响到脑氧供需平衡。低温降低脑氧代谢率在一定程度已得到公认,低温CPB后期的快速复温致某些再灌注期的高温状态,削弱了低温脑保护的整体效应[8]。由于颈内静脉球部血液是从脑组织直接回流的血液,故目前临床对脑氧代谢的研究主要是通过测定SjvO2计算CERO2和Da-jvO2来分析CBF和CMRO2是否匹配,反映出CPB期间脑氧供需平衡的实际状况。根据Fick原理:SjvO2=SaO2-CMRO2/CBF·CaO2,CPB过程中SaO2常接近于100%,则SjvO2=1-CMEO2/CBF·CaO2,可反映出脑氧供需的变化[9]。当CBF增加和/或CMRO2降低时SjvO S100蛋白是一种酸性钙结合蛋白,存在于胶质细胞,其不受溶血、CPB低温、肝素等的影响。在缺血性脑损伤早期,神经胶质细胞被激活,反应性增生,随后由于细胞坏死,释放大量S100b蛋白到脑脊液中,并透过损伤的血脑屏障到达血液。CPB后的常规生化指标如乳酸、CKMB等指标的变化,不能鉴别患者中枢神经系统损伤程度,而S100蛋白水平的持续监测对于脑损伤的敏感性和相关性更强[12]。有意义的是,约70%的患者在CPB后出现的早期敏感认知功能障碍与CPB术后S100蛋白增高水平密切相关[13]。S100b蛋白是脑损伤的特异性标志物,当其血清浓度超过0.5μg/L时具有病理意义[14]。本研究结果显示,CPB前所有患者血浆S100b蛋白的水平均低于0.5μg/L,CPB开始后血浆S100b蛋白的水平迅速升高,复温至 烯醇化酶是糖酵解途径中的关键酶,普遍存在于生物体的糖酵解代谢中,NSE是其同工酶,主要分布于神经元和神经内分泌细胞的胞浆中,占脑内可溶性蛋白质的1.5%。灰质中因富含神经元而有高浓度NSE,周围神经中NSE含量远低于脑,相差达10~100倍。NSE在体液中较稳定,与非神经性烯醇化酶之间无交叉免疫反应。在脑损伤疾病中,血清和(或)脑脊液中NSE显著升高,且与脑损伤范围或疾病严重程度密切相关,这些性质决定NSE可作为判断CPB术后神经元和神经胶质细胞受损的生化标志物[15,16]。本研究结果显示,CPB开始后血浆NSE浓度迅速持续升高,CPB结束30min达到峰值,此时点异丙酚麻醉组NSE浓度明显低于异氟烷麻醉组。 从研究结果可见,尽管两组氧代谢指标变化趋势基本一致,但变化幅度还是有差别的,异丙酚麻醉组的变化幅度要远远低于异氟烷麻醉组(P<0.05)。已有的研究结果证实,异丙酚具有脑保护作用,其可降低CBF、颅内压(ICP)和脑代谢率,保持CBF和脑氧代谢率的良好匹配,使脑氧耗减少,改善脑缺血状态下的氧供需平衡[17]。异氟烷亦降低脑代谢,但其在一定剂量范围内则增加CBF,可能造成氧供需平衡失调。研究发现异丙酚能够保持脑血管对CO2的反应性及脑血管的自动调节功能,使脑的血供和氧耗更易保持匹配[18]。在CPB情况下,异丙酚和异氟烷的药代动力学发生了不同的变化,吸入麻醉药在低温下达到平衡所需时间更长,而且CPB开始前就已经使用的吸入麻醉药还需要再平衡,所以会出现麻醉深度的明显波动,直到平衡完成,这使得异氟烷组在CPB期间的麻醉深度不易维持,这也是造成脑氧供需失衡的原因之一。而异丙酚麻醉组血药浓度尽管也受CPB的影响有所波动,在CPB过程中异丙酚的血药浓度下降,但游离的异丙酚浓度并未下降,甚至效价更高,更易维持恒定的麻醉深度。根据本研究结果,认为CPB瓣膜置换手术病人采用静脉麻醉比吸入麻醉能更好地维持脑氧代谢平衡,减轻脑损伤。这些从血浆中S100b和NSE蛋白浓度的测定也支持该结论。 综上所述,异丙酚和异氟烷均可改变CPB复温过程的脑氧代谢,维持脑氧供需的相对平衡,减轻脑损伤,异丙酚静脉麻醉具有更佳的脑保护效应。 参 考 文 献 1 Wimmer GG,Matheis G,Breden M,Dietrich M,Oremek G,Westphal K,Windelmann BR,Moritz A.Neuropsychological changes after cardiopulmonary bypass for coronary artery bpass grafting[J].Thorac Cardiovasc Surg,1998,46:207-212 2 Blumenthal JA,Mahann EP,Madden DJ,White WD,Croughwell ND,Newman MF.Methodological issues in the assessment of neuropsycologic function after cardiac surgery[J].Ann Thorac Surg,1995,59:1345-1350 3 Gao F,Harris DN,Sapsed Byrne S,Sharp S.Neurone-specific enolase and Sangtec 100 assays during cardiac surgery:Part Ⅰ:the effects of heparin,protamine and propofol[J].Perfusion,1997,12:163-165 4 Martens P,Raabe A,Johnsson P.Serum S-100 and neuron-specific enolase for prediction of regaining consciousness after global cerebral ischemia[J].Stroke,1998,29:2363-2366 5 Blomquist S,Johnsson P,Luhrs C,Malmkvist G,Solem JO,Alling C,Stahl E.The appearance of S-100 protein in serum during and immediately after cardiopulmonary bypass surgery:a possible marker for cerebral injury[J].J Cardiothorac Vasc Anesth,1997,11:699-703 6 Iwata T,Inoue S,Kawaguchi M,Sakamoto T,Kitaguchi K,furuya H,Sakaki T.Comparison of the effects of sevoflurane and propofol on cooling and rewarming during deliberate mild hypothermia for neurosurgery[J].Br J Anaesth,2003,90:32-38 7 Schell RM,Cole DJ.Cerebral monitoring:jugular venous oximetry[J] .Anesth Analg,2000,90:559- 8 Newman MF,Murkin TM,Roach G,Croughwell ND,White WD,Clements FM,Reves JG.Cerebral physiologic effects of burst suppression doses of propofol during nonpulsatile cardiopulmonary bypass[J].Anesth Analg,1999,81:542-547 9 Nakajima T,Kuor M,Hayashi.Clinical evaluation of cerebral balance during cardiopulmonary bypass,on line continuous monitoring of jugular venous oxyhaemoglobin saturation[J] .Anesth Analg,1992,74:630 10 Yoshitani K,Kawaguchi M,Sugiyama N,Sugiyama M,Inoue Sakamoto T,Kitaguchi K,Furuya H.The association of high jugular bulb venous oxygen saturation with cognitive decline after hypothemic cardiopulmonary bypass[J].Anesth Analg,2001,92:1370-1376 11 Grouhwell ND,Frasco P,Blumenthal JA,White WD,Lewis JB,Frasco PE,Smith LR,Hurwitxb,Thyrum EA,Hurwitzb J,Leone BJ,Schell RM,Reves JG.Jugular bulb saturation and cognitive dysfunction after cardiopulmonary bypass[J].Ann Thorac Surg,1994,107:1020- 12 Farsak B,Gunaydin S,Yorgancioglu C,Zorlutuna Y.Elevated levels of S100 beta correlate with neurocognitive outcome after cardiac surgery[J].J Cardiovasc Surg,2003,44:31-35 13 Ali MS,Hamer M,Vaughan R.Serum S100 protein as a marker of cerebral damage during cardiac surgery[J].Br J Anaesth,2000,85:287-298 14 Jonsson H,Johnsson P,Hoglund P,Alling C,Blomquist S.Elimination of S100b and renal function after cardiac surgery[J].J Cardiothorac Vasc Anesth,2000,14:698-701 15 Oh SH,Lee JG,Na SJ,Park JH,Choi YC,Kim WJ.Prediction of early clinical severity and extent of neuronal damage in anterior-circulation infarction using the initial serum neuron-specific enolase level[J].Arch Neurol,2003,60:37-41 16 Johnsson P,Blomquist S,Luhrs C,Malmkvist G,Alling C,Solem JO,Stahl E.Neuron-specific enolase increases in plasma during and immediately after extracorporeal circulation[J].Ann Thorac Surg,2000,69:750-754 17 Oshima T,Karasawa F,Satoh T.Effects of propofol on cerebral blood flow and the metabolic rate of oxygen in humans[J].Acta Anaesthesiol Scand,2002,46:831-835 18 Yoshitni K,Kawaguchi M,Iwata M,Sasaoka N,Inoue S,Kurumatani N,Furuya H.Comparison of changes in jugular venous bulb oxygen saturation and cerebral oxygen saturation during variations of haemoglobin concentration under propofol and sevoflurane anaesthesia[J].Br J Anaesth,2005,94:341-346
CPB期间脑氧代谢状况与其术后的中枢神经系统并发症之间的关系一直是相关学科关注的重点。多项研究发现CPB期间存在脑氧代谢失衡及脑功能损害[1,2]。因此,保持术中脑氧供需平衡,维持脑血流和脑氧代谢率的良好匹配是至关重要的。早期检测CPB后脑损伤的阳性率较低,联合检测S-100b和NSE蛋白有助于早期检测脑缺血缺氧性损伤和判断预后,且检测结果不受肝素、鱼精蛋白、异丙酚的影响[3],通过观察血清S-100b和NSE蛋白含量高低变化可预测脑功能障碍的发生[4,5]。据文献报道,选用合适的麻醉药物或麻醉方法可减轻这种失衡和损害,有利于脑保护[6-8]。本研究对比观察异氟烷和异丙酚麻醉对CPB期间脑氧代谢及脑损害标记物S100b和NSE蛋白变化的影响,旨在为临床合理用药提供参考。 |
|
|