您当前的位置:首页 > 《麻醉与监护论坛》杂志文章 > 17卷第3期
责任作者(通讯作者):段满林,Email:duan9001@163.com 【摘要】目的 观察神经病理性痛模型大鼠损伤侧损伤和邻近未损伤背根神经节神经元高电压激活钙电流的变化,以探讨两组神经元钙电流在大鼠神经病理性痛发病过程中的潜在作用。方法 采用SD雄性大鼠,以左侧L5脊神经结扎离断术建立神经病理性痛模型。酶消化法急性分离模型组损伤侧L5(SNL-L5组)、 L4(SNL-L4组)以及正常对照组L5、L4背根神经节神经元(C组),采用全细胞膜片钳技术记录神经元高电压激活钙电流。结果 SNL-L5组与SNL-L4组峰值钙流密度均较C组降低(P<0.05),且SNL-L5组的峰值钙电流密度亦低于SNL-L4组(P<0.05)。与C组和SNL-L4组相比,SNL-L5组钙电流半数激活电压向超级化方向移动(P<0.05),其N型钙电流比例上升 (P<0.05)。三组钙电流稳态失活曲线均无显著性差异(P>0.05)。结论 神经病理性痛模型大鼠损伤背根神经节神经元高电压激活钙电流密度降低,电流激活曲线向超级化方向移动,N型Ca2+电流比例升高,提示损伤背根神经节神经元高电压激活钙电流可能在诱发神经病理性痛的过程中起主导作用。 【关键词】钙通道;神经痛;神经节,脊;神经元
Changes of high-voltage-activated calcium current in dorsal root ganglion neurons isolated from neuropathic pain rats SUN Xiao-di, ZHU Min-min, CHENG Xiao-dong et al. Department of Anesthesiology , School of Medicine , Nanjing University/Nanjing General Hospital of Nanjing Military Command , PLA , Nanjing 210002 , China Corresponding author: DUAN Man-lin,Email:dml9001 @163.com [Abstract] Objective We investigate the changes of high-voltage-actived (HVA) current in axotomized and neighboring intact dorsal root ganglion (DRG) neurons in a rat model of spinal nerve ligation (SNL) and the underlying contribution. Methods Pathogen-free male SD rats(weight ,180~220mg)aged 4-6 weeks were used in this study. The animals were anesthetized with intraperitoneal pentobarbital sodium 50 mg/kg. L5 spinal nerve was ligated between DRG and sciatic nerve and cut distal to the ligature. The animals were decapitated on the 14th postoperative day. L5 and L4 DRGs were respectively isolated and the neurons in the ganglion were enzymatically dissociated. The control group of rats were not accepted the surgery. The lumbar DRG neurons of this group were gained with the same method.The HVA-Ca2+ current was recorded using whole cell patch clamp technique. Results Peak calcium current density was significantly diminished in the SNL-L5 and SNL-L4groups compared with that in the control group(P<0.05). Compared with the SNL-L4group, the SNL-L5 group also markedly reduced peak current density (P<0.05). Half-activation value (Va1/2) was also significantly lower in the SNL-L5 group versus in the control and SNL-L4 groups(P<0.05). The N-type relative contribution to the total HVA-Ca2+ current markedly elevated in the SNL-L5 group compared with that in the control and SNL-L4 groups(P<0.05). There was no significant difference in steady-state inactivation curves among the three groups(P>0.05). Conclusion In neuropathic pain rats , the HVA-Ca2+ cuurent of the injured DRG neurons may play a key role in inducing neuropathic pain. [Key words] Calcium channels;Neuralgia; Ganglia,spinal;Neurons
神经病理性痛是临床上常见的顽固性疼痛的综合症,其发病机制复杂,目前尚未完全阐明。在发病过程中,背根神经节(dorsal root ganglion , DRG)神经元所表达的高电压激活(high-voltage-actived,HVA) Ca2+通道对神经元敏化的形成和维持起关键作用[1]。目前认为,脊神经结扎离断( spinal nerve tight ligation , SNL)模型中至少有两组神经元产生异位放电:损伤及邻近未损伤传入神经元。二者均被假设能诱发和维持神经病理性痛,然而关于两组神经元在发病过程中的作用及地位问题一直存有争议[2]。本研究运用全细胞膜片钳技术,以正常大鼠腰段DRG神经元为对照,观察SNL大鼠损伤及邻近未损伤DRG神经元HVA-Ca2+电流的变化,对比研究两组神经元HVA-Ca2+电流是否或如何参与神经病理性痛的发生。 材料与方法 1.模型制备与鉴定:健康清洁级SD雄性大鼠,年龄4~6周,体重180~ 2.神经元急性分离: 参照Gold的方法进行DRG细胞的急性分离[4]:术后14天时,腹腔注射戊巴比妥钠50mg/kg深麻醉后,将SNL大鼠断头处死,迅速提取腰段脊柱,放入预先充好氧气的冰冻DMEM培养液(DMEM 13.4g/L,NaHCO3 3.实验分组:选取胞膜清晰、折光性好,表面光洁的中等大小(30~40 μm)的神经节细胞进行实验,共分为三组:正常对照组(C组),SNL大鼠L5DRG组(SNL-L5组)和SNL大鼠L4DRG组(SNL-L4组)。SNL-L5组为结扎离断的L5脊神经的DRG细胞,SNL-L4组为邻近L5脊神经的L4脊神经DRG细胞。C组大鼠不进行手术,用同样方法获取其腰段DRG细胞作为对照。 4. Ca2+电流记录: 采用EPC-9膜片钳放大器(HEKA公司,德国)进行全细胞Ca2+电流记录,电刺激脉冲方案和电流的记录由pulse + pulsefit程序控制完成。记录用微电极尖端直径为1~2 μm,充灌电极内液(mmol/L:CsCl 135,MgCl2 2,EGTA 11,CaCl2 1, HEPES 20,Mg-ATP 5,Li-GTP 0.4,Trisbase调pH至7.3)入液后电极阻抗为2-6MΩ。细胞破膜以及电流记录过程中的慢电容、串联电阻、系统电阻、电容电流和漏电流均自动补偿。实验过程中,选取串联电阻<20 MΩ且电流稳定的数据为有效数据。形成全细胞模式以后,在步阶电压的刺激下,得到一内向电流,此前我们的研究已证实,此内向电流即为HVA-Ca2+电流[5]。破膜后稳定10 min,给予不同的刺激方案记录Ca2+电流。 5.观察指标: (1)激活曲线:膜钳制电位为-90 mV,施加一组-70 mV~+40 mV,以10 mV递增,时程为80ms的指令电压记录激活电流,激活曲线由Boltzmann方程 G/Gmax=1/{1+exp[(Va1/2-Vm)/ Ka]}进行拟合,G为电导,G=I/(Vm–Vr) ,I为电流,Vm为指令电压,Vr为反转电位,Va1/2为半数激活电压, Ka为激活斜率因子;(2)电流-电压(I-V)曲线:采用激活刺激方案记录不同去极化电压的Ca2+电流,以电流密度(电流值和细胞容积的比值)为指标作I-V曲线;(3)失活曲线:膜钳制电位为-90 mV,给予-90 mV刺激10 ms,随后施加一组-70 mV~+20 mV,以10 mV递增,时程为500 ms的指令电压,然后给予-10 mV,时程为80ms的命令电压记录失活电流。稳态失活曲线由Boltzmann方程 I/Imax =1/{1+exp[(V-Vi1/2)/Ki]}进行拟合,I为电流,V为预刺激电压,Vi1/2为半数失活电压,Ki为失活斜率因子;(4)神经元各亚型HVA-Ca2+电流比例变化:膜钳制电位-90mv,对DRG神经元先施以-10 mv(或0mv),时程80 ms的刺激电压引出峰值Ca2+ 电流,待电流稳定后,分别加入20μmol/L硝苯地平(L型Ca2+通道阻断剂,美国sigma公司,57h1139),2μmol/L ω-Conotoxin MVIIC(P/Q型Ca2+通道阻断剂,美国sigma公司,017k4765)或2μmol/L ω-Conotoxin MVIIA(N型Ca2+通道阻断剂,美国sigma公司,028k4801),再给予-10 mv(或0mv),时程80 ms的刺激电压记录电流。电流抑制率= (I加药前– I加药后) / I 加药前*100%。 6.统计学处理: 采用Clamfit8.1和SigmaPlot10.0软件进行数据采集与处理。计量数据以均数±标准差( |