讨论<?xml:namespace prefix = o ns = "urn:schemas-microsoft-com:office:office" /> 在神经性疼痛形成的过程中,脊髓NMDA受体的活化发挥着关键作用[1]。研究显示,激动NMDA受体可引起Ca2+内流,从而激活细胞内钙敏感性一氧化氮合酶(NOS),促进NO生成[2]。通过增加细胞内cGMP的含量,NO可诱发神经元的“wind-up”效应,显著增强脊髓内的突触传递。 CGRP是体内一种与伤害性刺激传入和整合具有密切关系的兴奋性神经肽。在脊髓水平,CGRP的释放及其受体激活是伤害性感受信息传递和调控过程中的一个重要环节。行为学研究显示,鞘内预先注射CGRP可增强炎症或神经性疼痛状态并引起痛觉过敏[5],而应用CGRP受体拮抗剂可减轻炎症或神经损伤引起的痛觉过敏[6]。电生理学研究亦表明,CGRP参与了外周炎症状性疼痛时脊髓背角神经元的致敏[7]。而且应用离子渗透技术给予CGRP,可明显改变脊髓背角神经元的兴奋性[8]。 研究发现,结扎坐骨神经后3d左右,大鼠就可出现典型的慢性疼痛表现,并能持续到术后28~35d[4]。免疫组织化学研究证实,周围神经损伤后脊神经节内的CGRP合成明显上调,并且向脊髓背角神经元的兴奋性。本实验亦发现,结扎坐骨神经干可使大鼠脊髓背角内的CGRP表达明显增强,并且在长达14d的观察期内一直保持在较高水平,这进一步提示CGRP可能通过易化脊髓水平的伤害性感受信息传递而促进神经性疼痛的形成。 既往采用脊髓切片灌流技术研究发现,NO供体硝普钠可促进脊髓背角释放CGRP[10],而且辣椒辣素介导的CGRP释放作用亦需要NO的参与来完成[11]。还有研究证实,大鼠脊髓胶状质中合成NO的岛细胞可调节CGRP的释放[12]。而且在脊神经节内,大部分NOS阳性细胞与CGRP、P物质共存[13]。这些研究均提示,NO在脊髓水平介导神经性疼痛的作用可能与促进CGRP释放有关。但是,本实验结果显示,鞘内预注L-NAME未能有效抑制坐骨神经结扎所诱导的脊髓背角内CGRP释放增加并不是由NO引起的。上述研究与本实验的结果不同,可能与实验动物、实验模型、研究方法和NOS阻滞剂的种类及浓度等诸多因素有关。 综上所述,鞘内预注射L-NAME不能抑制周围神经损伤所导致的脊髓背角内CGRP表达,提示NO介导神经性疼痛的作用与促进CGRP释放无关。 参考文献 1 Li J, Simone DA, Larson AA. Windup leads to characteristica of central sensitization. Pain, 1999,79:75-82. 2 Roche AK, Cook M, Wilcox GL, et al. A nitric oxide synthesis inhibitor (L-NAME) reduce licking behavior and Fos-labeling in he spinal cord of rats during formalin-induced inflammation. Pain,1996,66:331-341. 3 Meller ST, Dykstra C, Gebhart GF. Production of endogenous nitric oxide and activation of soluble guanylate cyclase are required for N-methyl-D-aspartate-produced facilitation of the nociceptive tail-flick reflex. Eur J Pharmacol, 1992,214:93-96. 4 Bennett GJ, Xie YK. A peripheral mononeuropathy in rats that produce disorders of pain sensation like those seen in man. Pain, 1988,33:87-107. 5 Cridland RA, Henry JL. Intrathecal administration of CGRP in the rat attenuates a facilitation of the flick reflex induced by either substance P or noxious cutaneous stimulation. Neurosci Lett, 1989,102:241-246. 6 Bennett AD, Chastain KM, Hulsebosch CE. Alleviation of mechanical and thermal allodynia by CGRP8-37 in a rodent model of chronic central pain. Pain, 2000,86:163-175. 7 Neugebauer V, Rumenapp P, Schaible HG. Calcitonin gene-related peptide is involved in the spinal processing of mechanosensory input from the rat's knee joint and in the generation and maintenance of hyperexcitability of dorsal horn neurons during development of acute inflammation. Neuroscience, 1996,71:1095-1109. 8 Leem JW, Gwak YS, Lee EH, et al. Effects of iontophoretically applied substance P, calcitonin gene-related peptide on excitability of dorsal horn neurons in rats. Yonsei Med J, 2001,42:74-83. 9 Miki K, Fukuoka T, Tokunaga A, et al. Calcitonin gene-related peptide increase in the rat spinal dorsal horn and dorsal column nucleus following peripheral nerve injury: up-regulation in a subpopulation of primary afferent sensory neurons. Neuroscience, 1997,82:1243-1252. 10 Garry MG, Richardson JD, Hargreaves KM. Sodium nitroprusside evokes the release of immunoreactive calcitonin gene-related peptide and substance P from dorsal horn sliced via NO-dependent and NO-independent mechanisms. J Neurosci, 1994,14:4329-4337. 11 Garry MG, Walton LP, Davis MA. Capsaicin-evoked release of immunoreactive calcitonin gene0related peptide from the spinal horn is mediated by nitric oxide but not by cyclic GMP. Brain Res,2000,861:208-219. 12 Aimar P, Pasti L, Carmignoto G, et al. Nitric oxide-producing islet cells modulate the release of sensory neuropeptides in the rat substantia gelationosa. J Neurosci, 1998,18:10375-10388. 13 Aimi Y, Fujimura M, Vincent SR, et al. Localization of NADPH-diaphorase containing neurons in sensory ganglion of the rat. J Comp Neurol, 1991,306:382-392. |