您当前的位置:首页 > 主题内容 > 临床麻醉 > 专家评述
The role of mitochondrial KATP channels in caidioprotection of hyperpolarized cardioplegia FU Xiao-yun,LIU Xing-kui,YU Tian,Chen Qi-bin,Zhang Qiong (Department of Anesthesiology, 【ABSTRACT】 AIM: To study the protective effect of hyperpolarized cardioplegic arrest on reperfused rat heart perfermance and investigate the role of mitochondrial ATP-sensitive K+ channels (mitoKATP) opening in the protection of hyperpolarized cardioplegia against ischemia/reperfusion damage. METHODS:Forty Sprague-Dawley rats were randomized into five groups (n=8,each group):control group(Con),depolarized arrest group(D),hyperpolarized arrest group(H),depolarized cardioplegia with 5-hydroxydecanoate (5-HD) group(5HD+D), hyperpolarized cardioplegia with 5-HD group(5HD+H). The rat hearts were quickly removed to Langendorff apparatus. The hearts were perfused 20 min with RESULTS: (1) Compared with end-equilibration,30-min reperfusion caused significant differences in Left ventricular developed pressure(LADP), Left ventricular end-diastolic pressure(LVEDP), Double product (DP), Heart rate (HR),Coronary flow (CF)(P<0.01).TEM shew that myocardial and mitochondrial ultrastructure was damaged remarkably;(2)When H group was compared with D,5HD+H and Con group,significant differences were found in LVDP,LVEDP,DP,HR and CF(P<0.01),TEM shew that myocardial and mitochondrial ultrastructure was improved remarkably.(3) The rate of ROS generating was lower in group H than those in other four groups at end-reperfusion(P<0.01). CONCLUSION: (1)Of the four cardioplegias, hyperpolarized cardioplegia is superior to improve myocardial performance,attenuates myocardial and mitochondrial injury,reduces rate of ROS generating. (2)Mitochondrial preservation is one of mechanisms of myocardial protection of hyperpolarized cardioplegia ,opening of mitoKATP enhances cardioprotection through decreasing ROS generating, providing better energe supply for reperfused myocardium. [KEY WORDS] hyperpolarized cardioplegia;ATP-sensitive K+ channel; cardioprotection;mitochondria;reactive oxygen species 1983年Noma用单通道膜片钳技术在心肌细胞发现了胞膜ATP敏感性钾通道(Sarcolemmal ATP-sensitive K+ channel ,sarcKATP)[1],1991年Inoue S等在肝线粒体上发现了线粒体ATP敏感性钾通道(Mitochondrial ATP-sensitive K+ channel,mitoKATP)[2]。喻田等[3]报道了离体兔心ATP敏感性钾通道开放诱导的超极化停搏具有确切的心肌保护效果,并且优于高钾去极化停跳液。近年来,通过对离体和在体心脏缺血再灌注模型的研究发现,mitoKATP在心肌缺血再灌注线粒体功能保护中发挥了重要作用【4,5】。由于吡那地尔超极化停搏时,心肌SarcKATP及mitoKATP均同时开放,本文拟通过Langendorff离体大鼠心脏灌注模型,采用不同的停搏方式,比较各组再灌注末心功能的变化;提取心肌线粒体,观察不同组线粒体活性氧的产生,用特异性mitoKATP拮抗5-羟葵酸(5-hydexydecanoic acid ,5-HD)阻断mitoKATP,以观察mitoKATP开放是否参与超极化停搏的心肌保护作用。 材料和方法 1 材料 1.1 试验动物 清洁级雄性SD大鼠48只,体重250 1.2 主要试剂 吡那地尔(pinacidil)、5-羟葵酸(5-HD)、二氯荧光素双乙酸(DCFH-DA)均为美国Sigma公司产品,Kerbs-Henseleit缓冲液(mmol/l:NaCl 118.00, KCl 4.75, CaCl2: 2.50,NaHCO3 24.80, MgCl2•6H2O:1.19, KH2PO4 1.19, glucose 11.1),灌注前用95%氧和5%二氧化碳平衡10 min,pH7.35-7.45,PO2≥80KPa、PCO24.6-5.8KPa。 1.3 主要仪器 Langendorff离体心脏灌注模型 (澳大利亚Power Lab系统);pH计(瑞士,梅特勒-托利多仪器有限公司);电子显微镜(荷兰,菲利普公司); RF -5000型双波长荧光分光光度计(日本,岛津公司)。 2 实验方法 2.1 离体大鼠Langendorff全心缺血/再灌注动物模型的建立 腹腔注射戊巴比妥钠(30mg•kg-1)、肝素(250U•kg-1)。麻醉后迅速取心脏固定置于Langendorff灌注管口。用 2.2 灌注方案及数据采集 选择心脏标准:离体心脏 2.3 电镜检查 缺血前、再灌注末各组随机取心肌组织 2.4 线粒体活性氧测定 参照Mariusz等[6]的方法提取心肌线粒体。用Bradfold法[7]进行线粒体蛋白质定量。用721分光光度计、南京建成公司生产的蛋白质测定试剂盒测定。线粒体活性氧测定据Bejma等[8]提供方法略有改动,取石英杯3ml反映体系,其中线粒体活性氧测定介质2.9ml,加入0.5mg蛋白的线粒体,另一管不加线粒体。分别依次加琥珀酸、DCFH-DA , 3 统计学分析 结 果 1 心率和冠脉流量 超极化停搏组再灌注末心率及冠脉流量分别为(252.00±19.38)beats/min、(5.94±0.51)mL/min,高钾去极化停搏组再灌注末心率及冠脉流量分别为(213.50±12.42)beats/min、(4.50±0.41)mL/min,组间比较有显著性差异(P<0.01)。超极化停搏组与5HD-H组相比,加入5-HD后的超极化停搏液再灌注末心率及冠脉流量分别为(221.63±22.40)beats/min、(4.40±0.45)mL/min,再灌注末心率与冠脉流量明显低于超极化停搏组(P<0.01)(见表1)。 2 心脏收缩功能 各组心脏功能指标在平衡灌注末均无明显差异,超极化停搏组再灌注末的左室发展压LVDP、率压双乘积DP、左室舒张末压LVEDP分别为(61.92±7.16)mmHg、(15.60±2.15)mmHg·103/min、(20.61±3.85)mmHg,超极化停搏组较高钾去极化停搏组有更好的LVDP、DP、LVEDP的恢复(P<0.01);超极化停搏组与5HD-H组相比,5HD-H组再灌注末LVDP、DP、LVEDP分别为(47.15±6.04)mmHg、(10.52±0.60)mmHg·103/min、(32.43±3.22)mmHg,组间比较有显著性差异(P<0.01)(见表2)。 3 心肌组织电镜结果(图1-6) 平衡末正常心肌组织电镜:心肌结构清楚,胞膜连续性完整,心肌纤维排列整齐,肌节清晰。线粒体、肌质网等细胞器数量及形态未见异常,线粒体嵴排列整齐,未见明显肿胀,核及染色质未见异常。 H组再灌注末心肌组织电镜:胞膜完整,心肌纤维结构尚好,肌节结构清楚,H带增宽,仅个别区域肌原纤维有破坏。线粒体轻度肿胀,个别线粒体嵴排列稍紊乱,未见空泡变性、糖原。核及染色质未见显著改变。 Con组再灌注末心肌组织电镜:胞膜连续性破坏,心肌纤维排列有紊乱,肌节结构不清楚,以缩短为主。H带结构不清,部分肌纤维排列较散乱,部分肌原纤维结构消失或块状凝聚。线粒体中度肿胀,部分空泡变性 、破裂,嵴消失,未见糖原。 D组、5HD+D组、5HD+H组再灌注末心肌组织电镜:胞膜完整,大部分心肌纤维排列整齐,部分缩短,部分肌节破坏,个别肌原纤维结构破坏。线粒体轻度肿胀个别空泡变性,未见糖原蓄积,核及染色质未见显著改变。 4 线粒体活性氧生成率测定结果 再灌注末各组线粒体活性氧生成率均明显高于平衡末(P<0.01),超极化组线粒体再灌注末活性氧生成率为(8.64±0.80)U·s-1·mg-1protein,低于高钾去极化组线粒体的活性氧生成率(9.80±0.64 表1 不同停搏方式离体心脏心率(HR)、冠脉流量(CF)的变化 Group end- equilibrium end-reperfusion HR (beats/min) CF (mL/min) HR (beats/min) CF (mL/min) Con 326.00±19.50 9.04±0.74 153.00±19.50 ▲ 3.48±0.28▲ D 327.38±14.39 8.64±1.01 213.50±12.42 *,▲ 4.50±0.41*,▲ H 324.62±16.06 8.75±0.85 252.00±19.38 *,#,△,▲ 5.94±0.51*,#,△,▲ 5HD+D 322.88±12.26 8.79±0.96 219.88±15.42 *,▲ 4.22±0.41*,▲ 5HD+H 321.00±16.44 8.38±0.89 221.63±22.40 *,▲ 4.40±0.45*,▲ *P<0.01 vs control group, H group vs D group #P<0.01,H group vs 5HD+H group △P<0.01, end-reperfusion vs end- equilibrium ▲P<0.01. 表2 不同停搏方式离体心脏LVEDP、LVDP、DP的变化 Group end- equilibrium end-reperfusion LVEDP (mmHg) LVDP (mmHg) DP (mmHg·103/min) LVEDP (mmHg) LVDP (mmHg) DP (mmHg·103/min) Con 7.48±0.43 89.07±6.36 29.04±2.67 39.01±2.69 ▲ 35.46±3.75▲ 5.40±0.74▲ D 7.47±0.43 92.01±5.54 30.12±2.29 29.27±3.42 *,▲ 48.28±4.71*,▲ 10.32±1.32*,▲ H 7.48±0.41 91.40±7.92 29.68±3.12 20.61±3.85 *,#,△,▲ 61.92±7.16 *,#,△, |