Toll Like Receptor 4 Signal Pathway and Endotoxin Tolerance<?xml:namespace prefix = o ns = "urn:schemas-microsoft-com:office:office" /> 李永旺 王保国 首都医科大学附属北京天坛医院麻醉科 北京 100050 Yong-Wang Li, MD, PhD, and Bao-guo Wang, MD Department of Anesthesiology, Beijng Tiantan Hospital, Affiliate of Capital University of Medical Sciences, Beijing 100050, China ABSTRACT Endotoxin triggers inflammation which exacerbates organism injury, and is the major reason of postoperative patient died. Endotoxin tolerance provides direction for prevention and cure of the disease, but to date, the mechanisms remain to be resolved clearly. The discovery of toll like receptor 4(TLR4) makes us understand the mechanisms deeply. The endotoxin preconditioning stimulus activates TLR4 inflammatory signal pathways, leading not only to inflammation but also to simultaneous upregulation of feedback inflammation. These inhibitors, which include anti-inflammatory cytokines, decoy receptor and signaling inhibitors, reduce inflammatory response to a subsequent endotoxin attack. The prehension of mechanism of endotoxin tolerance highlights new avenues for future prevention and treatment of endotoximia. Keyword: Endotoxin; Tolerance; Toll like receptor 4 Corresponding author: Yong-wang Li, MD, PhD; E-mail:malyw@sohu.com 内毒素血症右铭及由此引起的脓毒症和脓毒性休克是术后病人感染死亡和重症监护病人死亡的主要原因。细菌内毒素/脂多糖(lipopolysaccharides, LPS)是该类疾病的主要致病原,尽管抗生素在临床上得到广泛应用,但其危害并没有得到有效控制[1]。人们在研究内毒素的过程中发现,细胞或机体经小剂量LPS刺激后,对LPS的再次刺激呈低反应或无反应状态,可以保护机体抵御致死性的内毒素攻击[2]。这一现象被称为内毒素耐受(又称LPS耐受)。尽管这一现象早已被发现,然而其发生机制一直未阐明。Toll样受体4(Toll like receptor 4, TLR4)作为LPS识别分子的发现为揭示内毒素耐受的分子机制提供了契机[3]。 |
一、TLR4介导的LPS炎症信号转导通路 TLR4是Toll样受体家族的成员之一,也是一种模式识别受体(pattern recognition recetors, PRRs),能够识别微生物进化过程中的一些保守结构即病原相关分子模式(pathogen-associated molecular patterns, PAMAs),如LPS。它属于Ⅰ型跨膜受体蛋白;胞外区由富含亮氨酸的重复序列LRR(leucine-rich repeats)组成,胞内区与IL-1受体胞内区相似,称为TIR(Toll/IL-1 receptor)区。LPS是G-细菌外膜的重要组成部分,并且是细菌被感染宿主识别的中心。TLR4的发现使LPS诱发的炎症通路得以阐明:由细菌释放入血的LPS,或被脂多糖结合蛋白(LPS binding protein, LBP)传递给CD14分子,或直接与TLR4的附属蛋白MD2(myeloid differentiation protein-2) 结合,在这些分子的辅助下激活TLR4, TLR4的 TIR区招募胞浆内的接头蛋白MyD88 (myeloid differentiation protein 88), MyD88的氨基末端死亡结构域(death domain)与IL-1受体相关激酶(IL-1 receptor-associated kinase, IRAK)的死亡结构域相互作用,导致IRAK的自主磷酸化。 磷酸化的IRAK与肿瘤坏死因子相关因子6(tumor necrosis factor-associated factor 6, TRAF6)形成复合物,转而使TRAF6发生寡聚化;然后可通过接头蛋白TAB2(TAK-1 binding protein)与转化生长因子β激活激酶1 (transforming growth factor-β-activated kinase-1, TAK-1)相互作用,使TAK-1活化。活化的TAK-1可以磷酸化NF-κB诱导激酶(NF-κB-inducing kinase, NIK)的N末端区域,从而激活NIK。NIK再激活IκB激酶(IKK),活化的IKK使IκB(NF-κB的抑制蛋白)磷酸化而降解,被解除抑制的NF-κB转位入核,启动转录。TRAF6还可与ECSIT(evolutionarily conserved intermediate in Toll pathways)相互作用,再依次激活MAPKKK、MAPKK、ERK、p38和JNK/ SAPK,最后导致转录因子AP-1(activating protein-1)家族的成员Jun和Fos的活化。NF-κB和AP-1的活化均可导致炎症因子如TNF-α、IL-1、IL-6、IL-8、NO、PAF、PGs和粘附分子等的大量表达,形成炎症(如图1所示)[2-6]。 总之,内毒素耐受的形成过程是复杂的,至今并未完全阐明,然而TLR4信号转导通路在在这一形成过程中起着极其重要的作用,可能会成为治疗内毒素血症的重要靶点。<?xml:namespace prefix = o ns = "urn:schemas-microsoft-com:office:office" /> |
二、TLR4通路与LPS耐受密切相关 炎症反应对于消除引起炎症的病原体和恢复细胞的正常功能是必不可少的。然而炎症反应的强度必须适当,否则将会加重组织细胞的损伤。机体为避免过度炎症反应造成自身损伤,在炎症反应过程中会生成一些负性反馈物缓冲炎症攻击。在体外和动物模型中对内毒素耐受进行的广泛研究表明,TLR4信号通路中各信号分子及其反馈抑制物在内毒素耐受的分子机制中起着重要作用。LPS预处理信号诱发轻微的炎症反应并产生一些炎症抑制因子,这些抑制因子限制随后严重内毒素攻击造成的损伤,从而形成内毒素耐受。内毒素耐受期间,预处理产生的反馈抑制物抑制TLR4信号通路中的信号分子以及炎症因子等的表达或抑制它们的作用。这些反馈抑制物包括抗炎细胞因子(IL-4,IL-10,IL-13)、诱饵受体(如sTNFR-55, IL-1RII和sIL-6R等)和TLR4信号通路抑制剂如ST2、SIGIRR(signle immunoglobulin IL-R-related molecule)、sMyD88 (short MyD88)、Tollip (Toll-interacting protein)、IRAK-M、SOCS1 (suppressor of cytokine signaling1)、IκBα、TWIST-1、PI3K (phosphatidylinositol 3-kinase)、TTP (tristetraprolin)等[2,7-19]。<?xml:namespace prefix = o ns = "urn:schemas-microsoft-com:office:office" /> IL-10是最重要的抗炎因子,它抑制所有炎性细胞因子的生成,包括IL-1β, TNF, IL-6, IL-8, IFN-γ和IL-12;并且下调TLR4的表达,是内毒素耐受的重要成分。而一旦炎性细胞因子释放入血液循环中,它们的作用就可以被诱饵受体所阻止。这些诱饵受体可通过炎性细胞因子诱导产生。细胞暴露于IL-1β可生成诱饵受体IL-1RII, 它是一种非信号受体,有两种存在形式:膜结合型和可溶型。这两种型式的受体均能结合并减少IL-1α和IL-1β的生物学活性。可溶性功能性受体,比如TNFR和gp130(IL-6和IL-6R复合物的信号受体),也可充当诱饵受体。可溶性的诱饵受体来源于脱落的膜结合受体或由缺少跨膜区编码序列的mRNA翻译而来。诱饵受体(比如sTNFR-55, sTNFR-75, IL-1RII, sIL-6R, 和sgp130 )结合、失活并加速清除它们各自相应的配体(TNF, IL-1α, IL-1β,和IL-6), 因此可以限制免疫激活作用。除了诱饵受体,还有一些诱饵配体(decoy ligand)能缓冲炎症,比如IL-1受体拮抗剂(IL-1Ra)[7]。
TLR4信号通路抑制剂作用于TLR4信号转导过程中的每一个环节来阻止炎症反应(如图2所示)。如ST2和SIGIRR(signle immunoglobulin IL-R-related molecule)抑制TIR4与接头蛋白的相互作用;截短的sMyD88 (short MyD88)抑制MyD88;Tollip (Toll-interacting protein)和IRAK-M抑制IRAK与MyD88的相互作用;SOCS1 (suppressor of cytokine signaling1)直接抑制IRAK的作用;IκBα抑制NF-κB;TWIST-1与NF-κB结合抑制TNF、IL-1β和IL-6的表达;PI3K (phosphatidylinositol 3-kinase)抑制MAPK的作用;RNA结合蛋白TTP (tristetraprolin) 能与编码促炎细胞因子的mRNA 3’端非翻译区富含AU的元件相结合, 招募脱腺苷化酶(deadenylase),该酶选择性降解TTP所结合的mRNA多聚A尾巴[poly(A)-tail],导致mRNA缩短,减少促炎细胞因子如TNF, IL-2, IL-6和GM-CSF的生成。这些反馈抑制剂的重要作用已在基因敲除小鼠上得到证实:小鼠缺乏某一反馈抑制剂基因,如SIGIRR ,IRAK-M,SOCS1, TTP, TWIST-1或ST2 ,将易遭受炎症的攻击。这些突变也显示再次遭受LPS攻击后促炎细胞因子表达增强并缺乏内毒素耐受。通常情况下,细胞内并不存在这些反馈性抑制剂,但当TLR4被激活后就可以转录生成[7-19] |
参 考 文 献<?xml:namespace prefix = o ns = "urn:schemas-microsoft-com:office:office" /> 1. Weigand MA, Horner C, Bardenheuer HJ et al. The systemic inflammatory response syndrome. Best Pract Res Clin Anaesthesiol. 2004;18(3):455-75. 2. Fan H, Cook JA. Molecular mechanisms of endotoxin tolerance. J Endotoxin Res. 2004;10:71-4 3. Aderem A, Ulevitch RJ. Toll-like receptors in the induction of the innate immune response. Nature, 2000;406:782-7. 4. 李永旺,毛宝龄,钱桂生.内毒素诱导的TLR4-MD2信号传导通路.中国药理学通报,2002;18(2):131-34. 5. Nagai Y, Akashi S, Nagafku M, et al. Essential of MD2 in LPS responsiveness and TLR4 distribution. Nat Immunol, 2002;3:667-72 6.Yang H, Young DW, Gusovsky F et al. Cellular events mediated by lipopolysaccharide-stimulated toll-like receptor 4. MD-2 is required for activation of mitogen-activated protein kinases and Elk-1. J Biol Chem, 2000;275(27):20861-6 7. Kariko K, Weissman D, Welsh FA. Inhibition of toll-like receptor and cytokine signaling--a unifying theme in ischemic tolerance. J Cereb Blood Flow Metab. 2004;24(11):1288-304. 8. Yoshimura A, Mori H, Ohishi M, et al. Negative regulation of cytokine-signaling influences inflammation. Curr Opin Immunol. 2003;15:704-8 9. Cui X, Rouhani FN, Hawari F, et al. Shedding of the type II IL-1 decoy receptor requires a multifunctional aminopeptidase, aminopeptidase regulator of TNF receptor type 1 shedding. J Immunol.2003;171:6814-9 10. Acalovschi D, Wiest T, Hartmann M, et al. Multiple levels of regulation of the interleukin-6 system in stroke. Stroke. 2003;34:1864-9 11. Mantovani A, Locati M, Polentarutti N, et al. Extracellular and intracellular decoys in the tuning of inflammatory cytokines and Toll-like receptors: the new entry TIR8/SIGIRR. J Leukoc Biol 2004;12:12 12. Brint EK, Xu D, Liu H, et al. ST2 is an inhibitor of interleukin 1 receptor and Toll like receptor 4 signaling and maintains endotoxin tolerance. Nat Immunol.2004;5:373-9 13. Burns K, Janssens S, Brissoni B, et al. Inhibition of interleukin 1 receptor/Toll-like receptor signaling through the alternatively spliced, short form of MyD88 is due to its failure to recruit IRAK-4. J Exp Med.2003;197:263-8 14.Fukao T, Koyasu S. PI3K and negative regulation of TLR signaling. Trends Immunol. 2003;24:358-63 15.Lai WS, Kennington EA, Blackshear PJ.Tristetraprolin and its family members can promote the cell-free deadenylation of AUrich element-containing mRNAs by poly(A) ribonuclease. Mol Cell Biol. 2003;23:3798-812 16. Kinjyo I, Hanada T, Inagaki-Ohara K, et al. SOCS1/JAB is a negative regulator of LPS-induced macrophage activation. Immunity.2002;17:583-91 17. Sosic D, Richardson JA, Yu K, et al. Twist regulates cytokine gene expression through a negative feedback loop that represses NF-kappaB activity. Cell. 2003;112:169-80 18. Wald D, Qin J, Zhao Z, et al. SIGIRR, a negative regulator of Toll like receptor-interleukin 1 receptor signaling. Nat Immunol.2003;4:920-927 19. Zhang G, Ghosh S. Negative regulation of Toll-like receptor mediated signaling by Tollip. J Biol Chem. 2002;277:7059-65 |
|