您当前的位置:首页 > 主题内容 > 重症监护 > ICU新进展
Simon等[1]报道25%~50%心搏骤停患者经标准心肺复苏能够恢复自主循环,但治愈率仍在2%~14%的低水平,造成这一差异的原因主要是顽固性神经细胞损伤。心肺复苏成功后,自主循环重新恢复,复杂的继发性脑血流分布紊乱导致了脑再灌注损伤和易损神经元的死亡,且伴有大脑功能预后的进一步恶化[2]。因此改善心肺复苏病人的神经功能预后( 即脑复苏),提高生活质量已成为心肺脑复苏的研究热点,现将该领域的进展综述如下: 有研究表明[6]AQP4敲除大鼠在血管源性脑水肿过程中多余水分的清除受到影响, 在连续性脑实质液体注射后AQP4基因敲除大鼠的颅内压和脑组织含水量明显增高, 在冰冻损伤造成的血管源性脑水肿模型中发现AQP4基因敲除大鼠颅内压和脑组织含水量明显增高, 临床结局也较差, 猜测可能是由于AQP4基因敲除后胶质膜和室管膜处的水转运降低造成的。AQP4在脑内介导水分的双向转运,不仅是水进入脑组织的主要通路,也是水排出脑组织的主要通路。因此,在细胞毒性脑水肿早期给予AQP4抑制剂可抑制水肿液进入脑实质,但在细胞毒性脑水肿后期或血管源性脑水肿时给予AQP4抑制剂则会加重脑水肿,其作用机制还有待阐明,可能为临床治疗脑水肿提供新的思路。 二、脑保护治疗 Tsai等[23]在大鼠脑缺血后向缺血皮质内注射rAAV-BDNF,结果表明,缺血后3d治疗组大脑皮质内BDNF含量达到对照组的5.5倍。进一步的研究发现,高表达的BDNF可以通过抗凋亡机制减轻皮质神经细胞的缺血性损伤。VEGF可促进新生血管形成, 减少脑梗死面积,缓解脑水肿,并能刺激轴突生长和改善神经细胞的存活,对神经细胞具有直接保护作用[24]。Shen等[25]发现rAAV载体构建中,利用低氧反应元件来调控rAAV-VEGF只能在缺血组织中的表达,并在小鼠脑缺血前5d通过侧脑室注射载体,脑缺血后1d蛋白印迹法检测发现,治疗组小鼠脑内VEGF表达量是对照组的2.5倍,脑缺血后7d发现,rAAV-VEGF治疗组细胞凋亡蛋白酶caspase23标记的阳性细胞数明显减少,并且脑梗死体积比对照组减少55%。 因此,抑制缺血后细胞凋亡也是减轻脑缺血脑损伤的重要方面。Bcl-2、Bcl-w蛋白能抑制调亡,Shimazaki等[26]研究发现,无论是在沙土鼠脑缺血前还是缺血后,海马锥体细胞层内注射rAAV-Bcl-2均能减少神经细胞的凋亡;Sun等[27]在大鼠脑缺血前3周rAAV-Bcl-w注射到缺血侧皮质和纹状体,免疫组化染色发现,Bcl-w在缺血半暗带神经细胞和神经胶质细胞中过度表达,与对照组相比,治疗组脑梗死体积可以减少30% ,并且神经功能也明显恢复。因此,实现对目的基因表达的有效调控,也是成功应用病毒载体基因治疗的重要研究内容。 尽管基因治疗技术在不断发展,目前仍存在许多障碍,研究更安全、高效的载体,如dsAAV载体在脑、胰岛和肝脏等器官中具有基因表达快、稳定、水平高、时间长以及转染范围广等优点,其转染效率明显优于ssAAV载体[28];研究对局部脑组织创伤小、不易感染而且转染率高的基因导入方法,如应用局部对流传递的方法输送载体,可以明显提高rAAV载体在猴子和大鼠脑内的转染效率[29];并且对于脑缺血要尽早进行转染, 以及进一步了解哪一种基因更适合脑缺血的基因治疗等,都是待解决的问题。 MCA和PICA平均流速同步增高、脑血流量增加可能因脑血管自主调节功能丧失和血管扩张所致。两者比值越低, 脑充血越重, 预后也就越差。另外,通过MRI弥散和灌注成像及MRI波谱分析评估心肺复苏后的脑血流恢复过程,显示了脑再灌的精确时间过程[31],在心搏骤停后20分钟,缺血后的血流模式首先表现为30分钟的高灌,随后是4小时的低灌流。同时演示了高晶体一高胶体渗透压混合液可以改善最初的脑再循环。MRI波谱分析显示了缺氧的脑厌氧代谢的长期保护作用。一项研究对8例严重缺氧后脑病患者进行PET(正电子体层扫描,脑代谢活动显著降低[32] ,脑灰质对葡萄糖的摄取量为正常值的54%,脑白质为正常值的70%[33]。 最近一项研究已经揭示了缺氧缺血性脑损伤与内皮激活和损伤之间的紧密联系,在神经学预后不良的患者中,von Willebrand因子抗原和可溶性细胞内黏附分子-1水平显著升高,这两者均是内皮损伤的最佳标记物。von Willebrand因子抗原浓度>166%和可溶性细胞内黏附分子-1水平>500 ng/dl对于心肺复苏存活者的不良预后的特异性为100%[37]。脑损伤的分子标记物血浆水平对于心搏骤停存活者的神经学预后的预测有重要意义,是今后复苏学研究的目标。 参考文献 1. Simon Cooper, Mohsen Janghorbani, Glenda cooper. A decade of in-hospital resuscitation: Outcomes and prediction of survival? Resuscitation, 2006, 68 (2): 231-237 2. Safar P. Cerebral resuscitation potentials for cardiac arrest. Crit Care Med, 2002, 30: 140-144 3. Bhardwaj A, Uiatowski JA. Hypertonic saline solutions in brain injury. Current Opinion Critical Care, 2004, 10(2): 126-131 4. Taniguchi M, Yamashita T, Kumura E, et al. Induction of aquaporin-4 water channel mRNA after focal cerebral ischemia in rat. Brain Res Mol Brains, 2000, 78(1):131-137 5. Manley GT , Fujimura M, Ma T , et al . Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke . Nat Med , 2000, 6(2): 159-163 6. Papadopoulos MC , Manley GT , Krishna S ,et al . Aquapo -rin-4 facilitates reabsorption of excess fluid in vaso-genic brain edema. FASEB J ,2004 , 18 (11): 1291-1293 7. Soukup J, Zaune A, Doppenberg EM, et a1. Relationship between train temperature, brain chemistry and oxygen delivery after severe human head injury: the effect of mild hypothermia. Neuronl Res, 2002, 24(2): 161-168 8. Carlina M, Maier CM, Cheng ML, et a1. Optimal depth and duration of mild hypothermia in a focal model of transient cerebral ischemia. J Stroke, 1998, 29(10): 2171-2172 9. 钱方毅。心肺复苏的现代观点。中国国际第三届现代救援医学论坛会刊,2005:37 10. 杨铁城,李春盛。心肺复苏研究进展。中华急救医学杂志,2006,15(2): 188-190 11. 江基尧,徐蔚,杨朋范。选择性脑超深低温技术对猴颈动脉血流阻断时限的研究。中华神经外科杂志, 2003, 19(4) : 304-306 12. 张丽,李鹏程,倪松林。超深低温作用下大鼠脑血流变化的激光散斑成像监测。物理学报,2006,22(4)303-310 13. 徐文琳,王春丽,张成岗等。脑红蛋白与Na + , K+ -ATP酶β2亚基的相互作用及作用位点的鉴定。生物化学与生物物理学报, 2003, 35(9) : 823-828 14. Lou M, Zhang H, Wang J, et al. Hyperbaric oxygen treatment attenuated the decrease in regional glucose metabolism of rats subjected to focal cerebral ischemia: A high resolution positron emission tomography study. Neuroscience, 2007, 146: 555-561 15. Mrsic-Pelcic J, Pelcic G, Vitezic D, et al. Hyperbaric oxygen treatment: the influence on the hippocampal superoxide dismutase and Na+, K+-ATPase activities in global cerebral ischemia-exposed rats. Neurochem Int, 2004, 44(8): 585-594 16. Lou M, Chen Y, DingM, et al. Involvement of the mitocho- ndrial ATP-sensitive potassium channel in the neuropro -tective effect of hyperbaric oxygenation after cerebral ischemia. Brain Res Bull, 2006, 69(2): 109-116 17. Zhou C, L i Y, Nanda A, et al. HBO suppresses Nogo-A, Ng-R, or RhoA expression in the cerebral cortex after global ischemia. Biochem Biophys Res Commun, 2003, 309(2): 368-376 18. 彭争荣,肖平田。新方案高压氧治疗对脑梗死患者神经功能缺损程度的影响。中国临床康复,2006, 10(24): 136 19. 李春盛,顾伟。心肺脑复苏治疗的新进展。中华急诊医学杂志,2006, 15(12): 1061-1062 20. 景炳文。心肺复苏中忌讳问题商榷。中国急救医学,2006,26(3): 202-203 21. VILA N. A genetic approach to ischemic stroke therapy. Cerebrovasc Dis, 2004, 17(1): 63-69 22. Afione SA, Wang J, Walsh S, et al. Delayed expression of adeno-associated virus vector DNA. Intervirology, 1999, 42(4): 213-220 23. Tsai TH, Chen SL, Xiao X, et al. Gene treatment of cerebral stroke by rAAV vector delivering IL-1ra in a rat model. Neuroreport, 2003, 14(6): 803-807 24. Lee HJ , Kim KS, Park IH, et al. Human neural stem cells over-expressing V EGF provide neuron protection, angio- genesis and func2tional recovery in mouse stroke model. PLOSONE, 2007, 2: 156 25. Shen F, Su H, Fan Y, et al. Adeno-associated viral vector -mediated hypoxia-inducible vascular endothelial growth factor gene expression attenuates ischemic brain injury after focal cerebral ischemia in mice. Stroke, 2006, 37(10): 2601-2606 26. Shimazaki K, Urabe M, Monahan J . Adeno-associated virus vector-mediated bcl-2 gene transfer into post-ischemic gerbil brain in vivo: prospects for gene therapy of ische- mia-induced neuronal death. Gene Ther, 2000, 7(14): 1244-1249 27. Sun Y, Jin K, Clark KR, et al. Adeno-associated virus- mediated delivery of BCL-w gene improves outcome after transient focal cerebral ischemia. Gene Ther, 2003, 10(2): 115-122 28. Gao GP, Lu Y, Sun X, et al. High level trans gene expression in nonhuman primate liver with novel adeno-associated virus serotypes containing self-complementary genomes. J Virol, 2006, 80(12): 6192~6194. 29. Hadaczek P, Kohutnicka M, Krauze MT, et al. Convection- enhanced delivery of adeno-associated virus type2(AAV2 ) into the striatum and transport of AAV2 with in monkey brain. Hum Gene Ther, 2006, 17(3): 291-302 30. Iida K, Satoh H, Anita K , et a1. Delayed hyperemia causing intracranial hypertension after cardiopulmonary resuscita- tion. Crit Care Med, 1997, 25(6): 971-976 31. 31 Krep H. Time course of circulatory and metabolic recovery of cat brain after cardiac arrest assessed by perfusion-and diffusion-weighted imaging and MR spectroscope. Resuscitation, 2003, 58(3): 337-348 32. Schaafsma A. Cerebral perfusion and metabolism in resusc- itated patients with severe post-hypoxic encephalopathy. J Neuron Sci 2003, 210: 23-30 33. Bokesch PM. Immediate-early gene expression in ovine brain after cardiac pulmonary by pass and hypothermic circulatory arrest. Anesthesiology, 1996, 85(6): 1439-1446 34. Snyder Ramos SA, Bottiger BW. Molecular markers of brain damage-clinical and ethical implications with particular focus on cardiac arrest. Restor Neurol Neurosci, 2003, 21(3-4): 123-139 35. Meynaar IA. Serum neuron-specific enolase predicts outcome in post-anoxic coma: a prospective cohort study. Intensive Care Med, 2003, 29(2): 189-195 36. Mussack T. Serum S-100B and interleukin-8 as predictive markers for comparative neurologic outcome analysis of patients after cardiac arrest and severe traumatic brain injury. Crit Care Med, 2002, 30(12): 2669-2674 37. Geppert A. Plasma concentrations of von Willebrand factor and intracellular adhesion molecule-1 for prediction of outcome after successful cardiopulmonary resuscitation. Crit Care Med, 2003, 31(3): 805-811 38. Noto T, Furuichi Y, Ishiye M, et al. Tacrolimus ( FK506) limits accumulation of granulocytes and platelets and protects against brain damage after transient focal cerebral ischemia in rat. Biol Pharm Bull, 2007, 30(2): 313-317 |
|
|